Transformers & Large Language Models
Understanding modern AI architectures like GPT, BERT, and how they revolutionized AI
The Transformer Revolution
Transformers, introduced in 2017 with the paper "Attention Is All You Need," revolutionized AI by replacing recurrent networks with attention mechanisms. This architecture became the foundation for modern large language models like GPT, BERT, and beyond.
⚡ Game Changer:
Transformers process entire sequences at once (parallel processing) rather than sequentially. This makes them faster to train and better at capturing long-range dependencies than RNNs.
Attention Mechanism: The Core Concept
Self-Attention: How Words Relate to Each Other
For the sentence "The cat sat on the mat because it was comfortable":
- • "it" should attend strongly to "mat" (not "cat")
- • "sat" relates to "cat" (subject-verb)
- • "comfortable" relates to "mat" (what was comfortable)
Self-attention learns these relationships automatically from data!
Multi-Head Attention Implementation
// Simplified Multi-Head Attention
class MultiHeadAttention {
constructor(numHeads, dModel) {
this.numHeads = numHeads;
this.dModel = dModel;
this.dHead = dModel / numHeads;
// Initialize weight matrices (simplified)
this.Wq = this.initWeights(dModel, dModel); // Query
this.Wk = this.initWeights(dModel, dModel); // Key
this.Wv = this.initWeights(dModel, dModel); // Value
this.Wo = this.initWeights(dModel, dModel); // Output
}
initWeights(rows, cols) {
return Array(rows).fill(0).map(() =>
Array(cols).fill(0).map(() => Math.random() * 0.02 - 0.01)
);
}
// Matrix multiplication
matmul(A, B) {
const result = [];
for (let i = 0; i < A.length; i++) {
result[i] = [];
for (let j = 0; j < B[0].length; j++) {
let sum = 0;
for (let k = 0; k < B.length; k++) {
sum += A[i][k] * B[k][j];
}
result[i][j] = sum;
}
}
return result;
}
// Scaled dot-product attention
attention(Q, K, V) {
const dK = K[0].length;
const scale = Math.sqrt(dK);
// Calculate attention scores: QK^T / sqrt(d_k)
const scores = [];
for (let i = 0; i < Q.length; i++) {
scores[i] = [];
for (let j = 0; j < K.length; j++) {
let score = 0;
for (let k = 0; k < Q[i].length; k++) {
score += Q[i][k] * K[j][k];
}
scores[i][j] = score / scale;
}
}
// Softmax to get attention weights
const weights = scores.map(row => this.softmax(row));
// Weighted sum of values
return this.matmul(weights, V);
}
softmax(arr) {
const max = Math.max(...arr);
const exps = arr.map(x => Math.exp(x - max));
const sum = exps.reduce((a, b) => a + b, 0);
return exps.map(x => x / sum);
}
// Forward pass
forward(X) {
// X: [seq_len, d_model]
// 1. Linear projections
const Q = this.matmul(X, this.Wq);
const K = this.matmul(X, this.Wk);
const V = this.matmul(X, this.Wv);
// 2. Split into multiple heads (conceptual)
// In practice, reshape and process heads in parallel
// 3. Apply attention
const attnOutput = this.attention(Q, K, V);
// 4. Concatenate heads and apply output projection
const output = this.matmul(attnOutput, this.Wo);
return output;
}
visualize() {
console.log("Multi-Head Attention Mechanism:
");
console.log("┌────────────────────┐");
console.log("│ Input Sequence │");
console.log("└───────┬────────────┘");
console.log(" │");
console.log(" ┌───┼───┐");
console.log(" │ │ │");
console.log(" Query Key Value");
console.log(" │ │ │");
console.log(" └───┬───┘");
console.log(" │");
console.log(" ┌─────┴─────┐");
console.log(" │ Attention │");
console.log(" │ Mechanism │");
console.log(" └─────┬─────┘");
console.log(" │");
console.log(" Output");
console.log("
Key Points:");
console.log("- Number of heads: " + this.numHeads + "");
console.log("- Model dimension: " + this.dModel + "");
console.log("- Head dimension: " + this.dHead + "");
console.log("- Each head learns different relationships");
}
}
// Example
const attention = new MultiHeadAttention(8, 512);
attention.visualize();
// Simulated input sequence (3 words, 512-dim embeddings)
const sequence = [
Array(512).fill(0).map(() => Math.random() * 0.1),
Array(512).fill(0).map(() => Math.random() * 0.1),
Array(512).fill(0).map(() => Math.random() * 0.1)
];
console.log("
Processing sequence...");
const output = attention.forward(sequence);
console.log("Input shape: [" + sequence.length + ", " + sequence[0].length + "]");
console.log("Output shape: [" + output.length + ", " + output[0].length + "]");
Transformer Architecture
📤 Encoder (e.g., BERT)
📤 Decoder (e.g., GPT)
Large Language Models (LLMs)
BERT (2018)
Bidirectional Encoder Representations from Transformers
Architecture: Encoder-only transformer
Training: Masked Language Modeling (predict masked words)
Best for: Text classification, NER, question answering
GPT (2018-present)
Generative Pre-trained Transformer
Architecture: Decoder-only transformer
Training: Next token prediction (autoregressive)
Versions: GPT-1 (117M) → GPT-2 (1.5B) → GPT-3 (175B) → GPT-4 (1.7T+ est.)
Best for: Text generation, translation, summarization, chat
T5 (2019)
Text-to-Text Transfer Transformer
Architecture: Full encoder-decoder transformer
Training: All tasks as text-to-text ("translate: ...", "summarize: ...")
Best for: Versatile, handles many NLP tasks
How LLMs Are Trained
// Simplified LLM Training Pipeline
class LLMTraining {
constructor() {
this.stages = [
{
name: "Pre-training",
description: "Train on massive text corpora",
objective: "Next token prediction",
data: "Books, websites, code (billions of tokens)",
duration: "Weeks/months on thousands of GPUs",
cost: "Millions of dollars"
},
{
name: "Supervised Fine-tuning",
description: "Fine-tune on high-quality examples",
objective: "Learn desired behavior",
data: "Curated question-answer pairs",
duration: "Days",
cost: "Thousands of dollars"
},
{
name: "RLHF (Reinforcement Learning from Human Feedback)",
description: "Align model with human preferences",
objective: "Maximize human satisfaction",
data: "Human ratings of model outputs",
duration: "Days/weeks",
cost: "Thousands to millions"
}
];
}
describeTraining() {
console.log("LLM Training Pipeline:
");
this.stages.forEach((stage, i) => {
console.log("=== Stage " + i + 1 + ": " + stage.name + " ===");
console.log("Description: " + stage.description + "");
console.log("Objective: " + stage.objective + "");
console.log("Data: " + stage.data + "");
console.log("Duration: " + stage.duration + "");
console.log("Cost: " + stage.cost + "");
console.log("");
});
}
// Token prediction example
nextTokenPrediction(context, vocabulary) {
console.log("Next Token Prediction Example:");
console.log("Context: "" + context + """);
console.log("
Model predicts probability distribution:");
// Simulated probabilities
const predictions = [
{ token: "learning", prob: 0.45 },
{ token: "language", prob: 0.25 },
{ token: "models", prob: 0.15 },
{ token: "systems", prob: 0.10 },
{ token: "other", prob: 0.05 }
];
predictions.forEach(pred => {
const bar = "█".repeat(Math.floor(pred.prob * 50));
console.log(" " + pred.token.padEnd(15) + " " + bar + " " + (pred.prob * 100).toFixed(1) + "%");
});
const chosen = predictions[0].token;
console.log("
Model chooses: "" + chosen + """);
console.log("Updated context: "" + context + " " + chosen + """);
}
}
const trainer = new LLMTraining();
trainer.describeTraining();
trainer.nextTokenPrediction("Artificial intelligence and machine", []);
Prompting Techniques for LLMs
Zero-Shot Prompting
Prompt: Classify the sentiment:
"This movie was amazing!"
Response: Positive
No examples provided, relies on pre-training
Few-Shot Prompting
Examples:
"Great film!" -> Positive
"Terrible acting." -> Negative
"This movie was amazing!"
Response: Positive
Provide examples to guide the model
Chain-of-Thought
Problem: If a store has 15 apples
and sells 7, then buys 12 more,
how many apples are there?
Let's think step by step:
1. Start: 15 apples
2. After selling: 15 - 7 = 8
3. After buying: 8 + 12 = 20
Answer: 20 apples
Show reasoning steps for complex tasks
Role Prompting
You are an expert Python developer.
Explain list comprehensions to a
beginner.
[Response would be tailored to
expert developer perspective]
Give the model a specific role/persona
LLM Applications & Use Cases
🤖 Chatbots & Assistants
- • ChatGPT, Claude, Gemini
- • Customer service bots
- • Virtual assistants
- • Educational tutors
📝 Content Generation
- • Article writing
- • Marketing copy
- • Email drafting
- • Social media posts
💻 Code Generation
- • GitHub Copilot
- • Code completion
- • Bug fixing
- • Code explanation
🌍 Translation & Analysis
- • Language translation
- • Text summarization
- • Sentiment analysis
- • Document Q&A
⚠️ LLM Limitations
- • Hallucinations: Can generate false or nonsensical information
- • No real understanding: Pattern matching, not true comprehension
- • Training data cutoff: No knowledge of events after training
- • Bias: Reflects biases in training data
- • Context limits: Can only process limited tokens at once
- • Computational cost: Expensive to run and train
💡 Key Takeaways
- ✓ Transformers use attention to process sequences in parallel
- ✓ Self-attention lets words relate to each other dynamically
- ✓ BERT, GPT, T5 are different transformer architectures
- ✓ LLMs are pre-trained on massive text corpora
- ✓ Prompting techniques dramatically affect output quality
- ✓ Applications are vast but limitations exist