Advanced
45 min
Full Guide

Transformers & Large Language Models

Understanding modern AI architectures like GPT, BERT, and how they revolutionized AI

The Transformer Revolution

Transformers, introduced in 2017 with the paper "Attention Is All You Need," revolutionized AI by replacing recurrent networks with attention mechanisms. This architecture became the foundation for modern large language models like GPT, BERT, and beyond.

⚡ Game Changer:

Transformers process entire sequences at once (parallel processing) rather than sequentially. This makes them faster to train and better at capturing long-range dependencies than RNNs.

Attention Mechanism: The Core Concept

Self-Attention: How Words Relate to Each Other

For the sentence "The cat sat on the mat because it was comfortable":

  • • "it" should attend strongly to "mat" (not "cat")
  • • "sat" relates to "cat" (subject-verb)
  • • "comfortable" relates to "mat" (what was comfortable)

Self-attention learns these relationships automatically from data!

Multi-Head Attention Implementation

// Simplified Multi-Head Attention
class MultiHeadAttention {
  constructor(numHeads, dModel) {
    this.numHeads = numHeads;
    this.dModel = dModel;
    this.dHead = dModel / numHeads;
    
    // Initialize weight matrices (simplified)
    this.Wq = this.initWeights(dModel, dModel); // Query
    this.Wk = this.initWeights(dModel, dModel); // Key
    this.Wv = this.initWeights(dModel, dModel); // Value
    this.Wo = this.initWeights(dModel, dModel); // Output
  }

  initWeights(rows, cols) {
    return Array(rows).fill(0).map(() =>
      Array(cols).fill(0).map(() => Math.random() * 0.02 - 0.01)
    );
  }

  // Matrix multiplication
  matmul(A, B) {
    const result = [];
    for (let i = 0; i < A.length; i++) {
      result[i] = [];
      for (let j = 0; j < B[0].length; j++) {
        let sum = 0;
        for (let k = 0; k < B.length; k++) {
          sum += A[i][k] * B[k][j];
        }
        result[i][j] = sum;
      }
    }
    return result;
  }

  // Scaled dot-product attention
  attention(Q, K, V) {
    const dK = K[0].length;
    const scale = Math.sqrt(dK);
    
    // Calculate attention scores: QK^T / sqrt(d_k)
    const scores = [];
    for (let i = 0; i < Q.length; i++) {
      scores[i] = [];
      for (let j = 0; j < K.length; j++) {
        let score = 0;
        for (let k = 0; k < Q[i].length; k++) {
          score += Q[i][k] * K[j][k];
        }
        scores[i][j] = score / scale;
      }
    }
    
    // Softmax to get attention weights
    const weights = scores.map(row => this.softmax(row));
    
    // Weighted sum of values
    return this.matmul(weights, V);
  }

  softmax(arr) {
    const max = Math.max(...arr);
    const exps = arr.map(x => Math.exp(x - max));
    const sum = exps.reduce((a, b) => a + b, 0);
    return exps.map(x => x / sum);
  }

  // Forward pass
  forward(X) {
    // X: [seq_len, d_model]
    // 1. Linear projections
    const Q = this.matmul(X, this.Wq);
    const K = this.matmul(X, this.Wk);
    const V = this.matmul(X, this.Wv);
    
    // 2. Split into multiple heads (conceptual)
    // In practice, reshape and process heads in parallel
    
    // 3. Apply attention
    const attnOutput = this.attention(Q, K, V);
    
    // 4. Concatenate heads and apply output projection
    const output = this.matmul(attnOutput, this.Wo);
    
    return output;
  }

  visualize() {
    console.log("Multi-Head Attention Mechanism:
");
    console.log("┌────────────────────┐");
    console.log("│   Input Sequence   │");
    console.log("└───────┬────────────┘");
    console.log("       │");
    console.log("   ┌───┼───┐");
    console.log("   │   │   │");
    console.log("  Query Key Value");
    console.log("   │   │   │");
    console.log("   └───┬───┘");
    console.log("       │");
    console.log(" ┌─────┴─────┐");
    console.log(" │ Attention  │");
    console.log(" │ Mechanism  │");
    console.log(" └─────┬─────┘");
    console.log("       │");
    console.log("   Output");
    console.log("
Key Points:");
    console.log("- Number of heads: " + this.numHeads + "");
    console.log("- Model dimension: " + this.dModel + "");
    console.log("- Head dimension: " + this.dHead + "");
    console.log("- Each head learns different relationships");
  }
}

// Example
const attention = new MultiHeadAttention(8, 512);
attention.visualize();

// Simulated input sequence (3 words, 512-dim embeddings)
const sequence = [
  Array(512).fill(0).map(() => Math.random() * 0.1),
  Array(512).fill(0).map(() => Math.random() * 0.1),
  Array(512).fill(0).map(() => Math.random() * 0.1)
];

console.log("
Processing sequence...");
const output = attention.forward(sequence);
console.log("Input shape: [" + sequence.length + ", " + sequence[0].length + "]");
console.log("Output shape: [" + output.length + ", " + output[0].length + "]");

Transformer Architecture

📤 Encoder (e.g., BERT)

Input Embedding + Positional Encoding
Multi-Head Self-Attention
Add & Normalize
Feed-Forward Network
Add & Normalize
× N layers

📤 Decoder (e.g., GPT)

Output Embedding + Positional Encoding
Masked Multi-Head Self-Attention
Add & Normalize
Feed-Forward Network
Add & Normalize
× N layers

Large Language Models (LLMs)

BERT (2018)

Bidirectional Encoder Representations from Transformers

Architecture: Encoder-only transformer

Training: Masked Language Modeling (predict masked words)

Best for: Text classification, NER, question answering

GPT (2018-present)

Generative Pre-trained Transformer

Architecture: Decoder-only transformer

Training: Next token prediction (autoregressive)

Versions: GPT-1 (117M) → GPT-2 (1.5B) → GPT-3 (175B) → GPT-4 (1.7T+ est.)

Best for: Text generation, translation, summarization, chat

T5 (2019)

Text-to-Text Transfer Transformer

Architecture: Full encoder-decoder transformer

Training: All tasks as text-to-text ("translate: ...", "summarize: ...")

Best for: Versatile, handles many NLP tasks

How LLMs Are Trained

// Simplified LLM Training Pipeline
class LLMTraining {
  constructor() {
    this.stages = [
      {
        name: "Pre-training",
        description: "Train on massive text corpora",
        objective: "Next token prediction",
        data: "Books, websites, code (billions of tokens)",
        duration: "Weeks/months on thousands of GPUs",
        cost: "Millions of dollars"
      },
      {
        name: "Supervised Fine-tuning",
        description: "Fine-tune on high-quality examples",
        objective: "Learn desired behavior",
        data: "Curated question-answer pairs",
        duration: "Days",
        cost: "Thousands of dollars"
      },
      {
        name: "RLHF (Reinforcement Learning from Human Feedback)",
        description: "Align model with human preferences",
        objective: "Maximize human satisfaction",
        data: "Human ratings of model outputs",
        duration: "Days/weeks",
        cost: "Thousands to millions"
      }
    ];
  }

  describeTraining() {
    console.log("LLM Training Pipeline:
");
    this.stages.forEach((stage, i) => {
      console.log("=== Stage " + i + 1 + ": " + stage.name + " ===");
      console.log("Description: " + stage.description + "");
      console.log("Objective: " + stage.objective + "");
      console.log("Data: " + stage.data + "");
      console.log("Duration: " + stage.duration + "");
      console.log("Cost: " + stage.cost + "");
      console.log("");
    });
  }

  // Token prediction example
  nextTokenPrediction(context, vocabulary) {
    console.log("Next Token Prediction Example:");
    console.log("Context: "" + context + """);
    console.log("
Model predicts probability distribution:");
    
    // Simulated probabilities
    const predictions = [
      { token: "learning", prob: 0.45 },
      { token: "language", prob: 0.25 },
      { token: "models", prob: 0.15 },
      { token: "systems", prob: 0.10 },
      { token: "other", prob: 0.05 }
    ];
    
    predictions.forEach(pred => {
      const bar = "█".repeat(Math.floor(pred.prob * 50));
      console.log("  " + pred.token.padEnd(15) + " " + bar + " " + (pred.prob * 100).toFixed(1) + "%");
    });
    
    const chosen = predictions[0].token;
    console.log("
Model chooses: "" + chosen + """);
    console.log("Updated context: "" + context + " " + chosen + """);
  }
}

const trainer = new LLMTraining();
trainer.describeTraining();
trainer.nextTokenPrediction("Artificial intelligence and machine", []);

Prompting Techniques for LLMs

Zero-Shot Prompting

Prompt: Classify the sentiment:
"This movie was amazing!"

Response: Positive

No examples provided, relies on pre-training

Few-Shot Prompting

Examples:
"Great film!" -> Positive
"Terrible acting." -> Negative

"This movie was amazing!"
Response: Positive

Provide examples to guide the model

Chain-of-Thought

Problem: If a store has 15 apples
and sells 7, then buys 12 more,
how many apples are there?

Let's think step by step:
1. Start: 15 apples
2. After selling: 15 - 7 = 8
3. After buying: 8 + 12 = 20

Answer: 20 apples

Show reasoning steps for complex tasks

Role Prompting

You are an expert Python developer.
Explain list comprehensions to a
beginner.

[Response would be tailored to
expert developer perspective]

Give the model a specific role/persona

LLM Applications & Use Cases

🤖 Chatbots & Assistants

  • • ChatGPT, Claude, Gemini
  • • Customer service bots
  • • Virtual assistants
  • • Educational tutors

📝 Content Generation

  • • Article writing
  • • Marketing copy
  • • Email drafting
  • • Social media posts

💻 Code Generation

  • • GitHub Copilot
  • • Code completion
  • • Bug fixing
  • • Code explanation

🌍 Translation & Analysis

  • • Language translation
  • • Text summarization
  • • Sentiment analysis
  • • Document Q&A

⚠️ LLM Limitations

  • Hallucinations: Can generate false or nonsensical information
  • No real understanding: Pattern matching, not true comprehension
  • Training data cutoff: No knowledge of events after training
  • Bias: Reflects biases in training data
  • Context limits: Can only process limited tokens at once
  • Computational cost: Expensive to run and train

💡 Key Takeaways

  • Transformers use attention to process sequences in parallel
  • Self-attention lets words relate to each other dynamically
  • BERT, GPT, T5 are different transformer architectures
  • LLMs are pre-trained on massive text corpora
  • Prompting techniques dramatically affect output quality
  • Applications are vast but limitations exist